Abstract
We derive a simple set of nonlinear, (1+1)-dimensional partial differential equations that describe the dynamical evolution of black strings and branes to leading order in the expansion in the inverse of the number of dimensions D. These equations are easily solved numerically. Their solution shows that thin enough black strings are unstable to developing inhomogeneities along their length, and at late times they asymptote to stable nonuniform black strings. This proves an earlier conjecture about the end point of the instability of black strings in a large enough number of dimensions. If the initial black string is very thin, the final configuration is highly nonuniform and resembles a periodic array of localized black holes joined by short necks. We also present the equations that describe the nonlinear dynamics of anti-de Sitter black branes at large D.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.