Abstract

Writing exploits for security assessment is a challenging task. The writer needs to master programming and obfuscation techniques to develop a successful exploit. To make the task easier, we propose an approach (EVIL) to automatically generate exploits in assembly/Python language from descriptions in natural language. The approach leverages Neural Machine Translation (NMT) techniques and a dataset that we developed for this work. We present an extensive experimental study to evaluate the feasibility of EVIL, using both automatic and manual analysis, and both at generating individual statements and entire exploits. The generated code achieved high accuracy in terms of syntactic and semantic correctness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.