Abstract
It has been shown that about two thirds of Xenopus oocyte or sea urchin egg cytoplasmic poly(A)+ RNA contains interspersed repetitive sequences. The functional significance of this interspersed RNA has remained unknown. Here the function of a subfamily of interspersed RNA (XR family; McGrew and Richter, 1989: Dev Biol 134:267-270) in Xenopus oocytes was studied. We found that the elimination of T7 XR (one of the two complementary strands of the XR repeat) interspersed RNA by complementary oligodeoxynucleotides significantly inhibited protein synthesis. On the other hand, the injection of in vitro synthesized T7 XR RNA stimulated translation. Moreover, the insertion of the T7 XR RNA sequence into globin mRNA repressed the translation of the globin mRNA. In order to explain these results, we analyzed interactions between the XR interspersed RNA and oocyte proteins. We found that the major XR RNA binding proteins were p56 and p60, which could be the known mRNA "masking" proteins that bind mRNA and inhibit translation. Further, a 42 kD protein has been identified that appears to bind T7 XR RNA relatively specifically, although it interacts with mRNA with a lower affinity. Based on all of these data, we have proposed that interspersed RNA may be involved in regulating translation by competing with mRNA to interact with certain proteins that can regulate translation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.