Abstract

We directly manipulated the levels of PtdIns, PtdInsP and PtdInsP2 in digitonin-treated adrenal chromaffin cells with a bacterial phospholipase C (PLC) from Bacillus thuringiensis and by removal of ATP. The PtdIns-PLC acted intracellularly to cause a large decrease in [3H]inositol- or [32P]phosphate-labelled PtdIns, but did not directly hydrolyse PtdInsP or PtdInsP2. [3H]PtdInsP and [3H]PtdInsP2 levels declined markedly, probably because of the action of phosphatases in the absence of synthesis. Removal of ATP also caused marked decreases in [3H]PtdInsP and [3H]PtdInsP2. The decrease in polyphosphoinositide levels by PtdIns-PLC treatment or ATP removal was reflected by the inhibition of the production of inositol phosphates upon subsequent activation of the endogenous PLC by Ca2(+)-dependent catecholamine secretion from permeabilized cells was strongly inhibited by PtdIns-PLC treatment and by ATP removal. Ca2(+)-dependent secretion was similarly correlated with the sum of PtdInsP and PtdInsP2 when the level of these lipids was changed by either manipulation. PtdIns-PLC inhibited only the ATP-dependent component of secretion and did not affect ATP-dependent secretion. Both PtdIns-PLC and ATP removal inhibited the late slow phase of secretion, but had little effect on the initial rapid phase. Although we found a tight correlation between polyphosphoinositide levels and secretion, endogenous phospholipase C activity (stimulated by Ca2+, guanine nucleotides and related agents) was not correlated with secretion. Additional experiments indicated that neither the products of the PtdIns-PLC reaction (diacylglycerol and InsP1) nor the inability to generate products by subsequent activation of the endogenous PLC is likely to account for the inhibition of secretion. Incubation of permeabilized cells with neomycin in the absence of ATP maintained the level of polyphosphoinositides and more than doubled subsequent Ca2(+)-dependent secretion. The data suggest that: (1) Ca2(+)-dependent secretion has a requirement for the presence of inositol phospholipids; (2) the enhancement of secretion by ATP results in part from increased polyphosphoinositide levels; and (3) the role for inositol phospholipids in secretion revealed in these experiments is independent of their being substrates for the generation of diacylglycerol and InsP3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.