Abstract

Data in the previous paper suggest that epinephrine can mobilize a small pool of arachidonic acid via an enzymatic pathway distinct from phospholipase C and that this pathway is blocked by perturbations that block Na+/H+ exchange. The present studies demonstrate that epinephrine and ADP stimulate a phosphatidylinositol-hydrolyzing phospholipase A2 activity in human platelets. This occurs even when measurable phospholipase C activation, platelet secretion, and secondary aggregation are blocked with the thromboxane A2 receptor antagonist SQ29548. Furthermore, perturbants of Na+/H+ exchange diminish lysophosphatidylinositol production in response to epinephrine, ADP, and thrombin, but not to the Ca2+ ionophore A23187. Artificial alkalinization of the platelet interior with methylamine reverses the effect of the Na+/H+ antiporter inhibitor, ethylisopropylamiloride, on thrombin-stimulated lysolipid production, suggesting that the alkalinization of the platelet interior which would occur secondary to activation of Na+/H+ exchange might play an important role in phospholipase A2 activation. In addition, treatment of platelets with methylamine increases the sensitivity of phospholipase A2 to activation by the Ca2+ ionophore A23187, suggesting that changes in pH and Ca2+ may regulate phospholipase A2 activity synergistically. Finally, epinephrine causes a prompt decrease in platelet-chlortetracyclin fluorescence even in the presence of cyclooxygenase inhibitors, suggesting that epinephrine is able to mobilize membrane-bound Ca2+ independent of phospholipase C activation. Taken together, the data suggest that epinephrine-provoked stimulation of phospholipase A2 activity may occur as a result of Ca2+ mobilization and a concomitant intraplatelet alkalinization resulting from accelerated Na+/H+ exchange.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.