Abstract

When recalling memories, we often scan information-rich continuous episodes, for example, to find our keys. How does our brain access and search through those memories? We suggest that high-level structure, marked by event boundaries, guides us through this process: In our computational model, memory scanning is sped up by skipping ahead to the next event boundary upon reaching a decision threshold. In adult Mechanical Turk workers from the United States, we used a movie (normed for event boundaries; Study 1, N = 203) to prompt memory scanning of movie segments for answers (Study 2, N = 298) and mental simulation (Study 3, N = 100) of these segments. Confirming model predictions, we found that memory-scanning times varied as a function of the number of event boundaries within a segment and the distance of the search target to the previous boundary (the key diagnostic parameter). Mental simulation times were also described by a skipping process with a higher skipping threshold than memory scanning. These findings identify event boundaries as access points to memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.