Abstract

AbstractDepressions in magnetic field strength, commonly referred to as magnetic holes, are observed ubiquitously in space plasmas. Subproton‐scale magnetic holes with spatial scales smaller than or on the order of a proton gyroradius, are likely supported by electron current vortices, rotating perpendicular to the ambient magnetic field. While there are numerous accounts of subproton‐scale magnetic holes within the Earth’s magnetosphere, there are few, if any, reported observations in other space plasma environments. We present the first evidence of subproton‐scale magnetic holes in the Venusian magnetosheath. During Parker Solar Probe’s first Venus Gravity Assist, the spacecraft crossed the planet’s bow shock and subsequently observed the Venusian magnetosheath. The FIELDS instrument suite onboard the spacecraft achieved magnetic and electric field measurements of magnetic hole structures. The electric fields associated with magnetic depressions are consistent with electron current vortices with amplitudes on the order of 1 μA/m2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.