Abstract

Cation ordering in perovskite-derived phases can lead to a wealth of tunable physical properties. Ordering is typically driven by a large difference between the cation size and charge, but many Ruddlesden-Popper phases An+1BnO3n+1 appear to lack such B-site ordering, even when these differences are present. One such example is the "double" Ruddlesden-Popper n = 1 composition LaSr3NiRuO8. In this material, a lack of B-site ordering is observed through traditional crystallographic techniques, but antiferromagnetic ordering in the magnetism data suggests that B-site cation ordering is indeed present. Neutron total scattering, particularly analysis of the neutron pair distribution function, reveals that the structure is locally B-site-ordered below 6 Å but becomes slightly disordered in the midrange structure around 12 Å. This provides evidence for paracrystalline order in this material: cation ordering within a single perovskite sheet that lacks perfect registry within the three-dimensional stack of sheets. This work highlights the importance of employing a structural technique that can probe both the local and midrange order in addition to the crystallographic structure and provides a structural origin to the observed magnetic properties of LaSr3NiRuO8. Further, it is proposed that paracrystalline order is likely to be common among these layered-type oxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.