Abstract

State selective charge exchange processes in 1–10 keV/amu Ne8+ +Na(3s) collisions were measured by means of the magneto-optical trap recoil-ion momentum spectroscopy technique and compared to classical trajectory Monte Carlo calculations. We find that for electron capture to n-levels ≥ 10, the transverse momentum distributions exhibit an oscillatory structure which is very sensitive to the impact energy. Our theoretical analysis suggests that this feature is a direct consequence of the number of swaps the electron undergoes across the potential energy saddle during the charge exchange process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.