Abstract
The kinetic properties of hKv1.5, a Shaker-related cardiac delayed rectifier, expressed in Ltk − cells were studied. hKv1.5 currents elicited by membrane depolarizations exhibited a delay followed by biphasic activation. The biphasic activation remained after 5-s prepulses to membrane potentials between −80 and −30 mV; however, the relative amplitude of the slow component increased as the prepulse potential approached the threshold of channel activation, suggesting that the second component did not reflect activation from a hesitant state. The decay of tail currents at potentials between −80 and −30 mV was adequately described with a biexponential. The time course of deactivation slowed as the duration of the depolarizing pulse increased. This was due to a relative increase in the slowly decaying component, despite similar initial amplitudes reflecting a similar open probability after 50- and 500-ms prepulses. To further investigate transitions after the initial activated state, we examined the temperature dependence of inactivation. The time constants of slow inactivation displayed little temperature and voltage dependence, but the degree of the inactivation increased substantially with increased temperature. Recovery from inactivation proceeded with a biexponential time course, but long prepulses at depolarized potentials slowed the apparent rate of recovery from inactivation. These data strongly indicate that hKv1.5 has both multiple open states and multiple inactivated states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.