Abstract

AbstractA major arc batholith, the Western Fiordland Orthogneiss (WFO) in Fiordland, New Zealand, exhibits irregular, spatially restricted centimetre‐scale recrystallization from two‐pyroxene hornblende granulite to garnet granulite flanking felsic dykes. At Lake Grave, northern Fiordland, the composition and texture of narrow (<10–20 mm across) felsic dykes that cut the orthogneiss are consistent with an igneous origin and injection of melt to form orthogneiss migmatite. New U–Pb geochronology suggests that the injection of dykes and migmatization occurred at c. 115 Ma, during the later stages of arc magmatism. Recrystallization to garnet granulite is promoted by volatile extraction from the host two‐pyroxene hornblende granulite via adjacent dykes and the patchy development of garnet granulite is left as a marker adjacent to the melt migration path. New mineral equilibria modelling suggests that a two‐pyroxene hornblende assemblage is stable at <11 kbar, whereas a garnet granulite assemblage is stable at >12 kbar, suggesting that garnet granulite may have formed with <5 km crustal loading of the batholith. Although the garnet granulite assemblages signify that the WFO experienced high‐P conditions, the very local nature of these textures indicates widespread metastability (>90%) of the two‐pyroxene hornblende granulite assemblages. These results indicate the strongly metastable nature of assemblages in mafic lower arc crust during deep burial and demonstrate that the degree of reaction in the case of Fiordland is related to interaction with migrating melts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.