Abstract
SnSe is a topical thermoelectric material with a low thermal conductivity which is linked to its unique crystal structure. We use low-temperature heat capacity measurements to demonstrate the presence of two characteristic vibrational energy scales in SnSe with Debye temperatures θD1 = 345(9) K and θD2 = 154(2) K. These hard and soft substructures are quantitatively linked to the strong and weak Sn-Se bonds in the crystal structure. The heat capacity model predicts the temperature evolution of the unit cell volume, confirming that this two-substructure model captures the basic thermal properties. Comparison with phonon calculations reveals that the soft substructure is associated with the low energy phonon modes that are responsible for the thermal transport. This suggests that searching for materials containing highly divergent bond distances should be a fruitful route for discovering low thermal conductivity materials.
Highlights
a topical thermoelectric material with a low thermal conductivity which is linked to its unique crystal structure
We use low-temperature heat capacity measurements to demonstrate the presence of two characteristic vibrational energy scales in SnSe
Comparison with phonon calculations reveals that the soft substructure is associated with the low energy phonon modes
Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.