Abstract

Transformed cells can spontaneously silence genes by de novo methylation, and it is generally assumed that this is due to DNA methyltransferase activity. We have tested the alternative hypothesis that gene silencing could be due to the uptake of 5-methyl-dCMP into DNA, via the di- and triphosphonucleotides. 5-Methyl-dCMP would be present in cells from the ongoing repair of DNA. We have isolated a strain of Chinese hamster ovary (CHO) cells, designated HAM-, which spontaneously silences two tested genes at a very high frequency. We have shown that this strain incorporates 5-[3H]methyldeoxycytidine into 5-methylcytosine and thymine in DNA. It also has low 5-methyl-dCMP deaminase activity. Another HAM+ strain has high deaminase activity and a very low frequency of gene silencing. The starting strain, CHO K1, has a phenotype intermediate between HAM- and HAM+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.