Abstract

In 2019, the WHO tuberculosis (TB) treatment guidelines were updated to recommend only limited use of streptomycin, in favor of newer agents or amikacin as the preferred aminoglycoside for drug-resistant Mycobacterium tuberculosis However, the emergence of resistance to newer drugs, such as bedaquiline, has prompted a reanalysis of antitubercular drugs in search of untapped potential. Using 211 clinical isolates of M. tuberculosis from South Africa, we performed phenotypic drug susceptibility testing (DST) to aminoglycosides by both critical concentration and MIC determination in parallel with whole-genome sequencing to identify known genotypic resistance elements. Isolates with low-level streptomycin resistance mediated by gidB were frequently misclassified with respect to streptomycin resistance when using the WHO-recommended critical concentration of 2 μg/ml. We identified 29 M. tuberculosis isolates from South Africa with low-level streptomycin resistance concomitant with high-level amikacin resistance, conferred by gidB and rrs 1400, respectively. Using a large global data set of M. tuberculosis genomes, we observed 95 examples of this corresponding resistance genotype (gidB-rrs 1400), including identification in 81/257 (31.5%) of extensively drug resistant (XDR) isolates. In a phylogenetic analysis, we observed repeated evolution of low-level streptomycin and high-level amikacin resistance in multiple countries. Our findings suggest that current critical concentration methods and the design of molecular diagnostics need to be revisited to provide more accurate assessments of streptomycin resistance for gidB-containing isolates. For patients harboring isolates of M. tuberculosis with high-level amikacin resistance conferred by rrs 1400, and for whom newer agents are not available, treatment with streptomycin may still prove useful, even in the face of low-level resistance conferred by gidB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.