Abstract
The respiratory adaptation (i.e., essentially mitochondrial biogenesis) in the excision repair-defective rad3-type mutants of Saccharomyces cerevisiae undergoing transition from the anaerobic to the aerobic state is found to be far more sensitive to 254-nm ultraviolet radiation (UV) than that of the RAD wild-type strain. We confirm that mitochondria of aerobic cells of a RAD strain lack the excision repair capacity of UV-induced pyrimidine dimers at all doses tested (1–15 J/m2). In contrast, in promitochondria of anaerobic cells of the wild-type strain excision repair appears to take place. This process is very efficient at low doses (at 0.5–5 J/m2 100% of the UV endonuclease-sensitive sites disappear), whereas at high doses its efficiency is reduced by about 50%. The promitochondrial excision repair of pyrimidine dimers appears to be under nuclear control since it is blocked in the rad2 mutant. Finally photoreactivation is found to be operating in nuclei, mitochondria and promitochondria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.