Abstract

The NANOGrav Collaboration recently reported a strong evidence for a stochastic common-spectrum process in the pulsar-timing data. We evaluate the evidence of interpreting this process as mergers of super massive black hole binaries and/or various stochastic gravitational wave background sources in the early Universe, including first-order phase transitions, cosmic strings, domain walls, and large amplitude curvature perturbations. We discuss the implications of the constraints on these possible sources. It is found that the cosmic string is the most favored source against other gravitational wave sources based on the Bayes factor analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.