Abstract

A study was made to determine if constitutively active adenosine receptors are present at mouse motor nerve endings. In preparations blocked by low Ca2+/high Mg2+ solution, 8-cyclopentyl-1,3,dipropylxanthine (CPX, 10–100nM), which has been reported to be both an A1 adenosine receptor antagonist and inverse agonist, produced a dose-dependent increase in the number of acetylcholine quanta released by a nerve impulse. Adenosine deaminase, which degrades ambient adenosine into its inactive congener, inosine, failed to alter the response to 100nM CPX. 8-Cyclopentyltheophylline (CPT, 3μM), a competitive inhibitor at A1 adenosine receptors, prevented the increase in acetylcholine release produced by CPX. At normal levels of acetylcholine release, neither adenosine deaminase nor CPX affected acetylcholine release at low frequencies of nerve stimulation in (+)-tubocurarine blocked preparations. The results suggest that a proportion of the acetylcholine release process is controlled by constitutively active adenosine receptors at murine motor nerve endings, providing the first evidence for constitutive activity of G-protein-coupled receptors that modulate the function of mammalian nerve endings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.