Abstract
There is growing evidence that the complement activation product C5a positively or negatively regulates inflammatory functions. The studies presented here report that C5a exerts anti-inflammatory effects by altering production of the cytokines IL-17A and IL-23 during endotoxic shock in young adult male C57BL/6J mice and has similar effects on macrophages from the same mice. IL-17A and IL-23 both appeared in plasma during endotoxemia, and their neutralization improved survival. The relevant sources of IL-17A during endotoxemia were not CD4(+) cells, γδ T cells, or NK cells but CD11b(+)F4/80(+) macrophages. The addition in vitro of C5a to lipopolysaccharide-activated peritoneal macrophages dose dependently antagonized the production of IL-17A (IC(50), 50-100 nM C5a) and IL-23 (IC(50), 10 nM C5a). This suppression required the receptor C5aR, but was independent of the second C5a receptor, C5L2. Genetic absence of C5aR was associated with much higher levels of IL-17A and IL-23 during endotoxic shock. Mechanistically, C5a mediated its effects on the IL-17A/IL-23 axis in a 2-step process. C5a caused activation of the PI3K-Akt and MEK1/2-ERK1/2 pathways, resulting in induction of IL-10, which powerfully inhibited production of IL-17A and IL-23. These data identify previously unknown mechanisms by which the anaphylatoxin C5a limits acute inflammation and antagonizes the IL-17A/IL-23 axis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.