Abstract

Physical ecosystem engineers often make major, durable physical constructs that can provide living space for other species and can structure local animal communities over evolutionary time. In Florida, a medium sized chelonian, the Gopher Tortoise (Gopherus polyphemus) will excavate extensive subterranean chambers that can endure for long periods of time. The tortoise starts a ‘burrowing cascade’, by first excavating a larger burrow that may extend 10m, which is then re-engineered by Florida Mice (Podomys floridanus) and other rodents that dig smaller side-burrows and pockets. This sequence is often followed by an invertebrate, the camel cricket (Ceuthophilus labibuli) which is reported to excavate even smaller chambers. Our first aim was to quantify the zoogeomorphic impact of this burrowing cascade by measuring the amount of soil excavated in a large sample of burrows in two communities. Secondly, we hypothesized that the high biodiversity reported for these structures might be related to the quasi-fractal nature of the geometry, following the work of Frontier (1987). To visualize this underground geometry, we used high-resolution 3D Ground Penetrating Radar (GPR), which provided images and insights previously unobtainable using excavations or 2D GPR. Our images verified that the active tortoise burrow had a spiraling shape, but also showed splits in the larger burrow apparently dug by tortoises. For the first time, the smaller Florida Mouse burrows were imaged, showing side loops that exit and re-renter the tortoise burrow. This study also presents new information by making the discovery of numerous remnants of past tortoise burrows underground in the sampling grid surrounding the active burrow. Our third aim was to interpret our field results with previous ecological field studies to evaluate the strength of evidence that this species ranks as an ecosystem engineer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.