Abstract
The major mechanism underlying the neuroleptic action of the tridecapeptide neurotensin (NT) appears to be an interaction with dopamine receptor mechanisms based on biochemical binding and behavioral experiments. In vivo microdialysis was used in conscious rats to investigate the effects of local perfusion with NT on the sensitivity of striatal dopamine D1 and D2 receptors for their selective agonists by monitoring extracellular dopamine, 3,4-dihydroxyphenylacetic acid, homovanilic acid, and gamma-aminobutyric acid levels in the awake unrestrained male rat. Perfusion with NT (10 nM) counteracted the inhibitory effects of the dopamine D2 agonist pergolide (500 nM) on extracellular levels of dopamine and gamma-aminobutyric acid. In contrast, NT (10 mM) significantly enhanced the reduction of extracellular striatal levels of dopamine after perfusion with the D1 agonist SKF 38393 (5 microM), and this combined treatment also resulted in a significant increase in the extracellular striatal levels of gamma-aminobutyric acid. These results provide in vivo evidence that NT regulates central dopamine transmission by reducing pre-and postsynaptic dopamine D2 and enhancing D1 receptor sensitivity possibly through an antagonistic NT receptor-D2 receptor interaction. This heteroregulation has the potential to substantially increase the plasticity within the dopamine synapse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.