Abstract

Transport measurements of high-mohility two-dimensional electron systems at low temperatures have revealed a large resistance anisotropy around half-filling of excited Landau levels. These results have been attributed to electronic stripe-phase formation with spontaneously broken orientational symmetry. Mechanisms which are known to break the orientational symmetry include poorly-understood crystal structure effects and an in-plane magnetic field, $B_{||}$. Here we report that a large $B_{||}$ also causes the transport anisotropy to persist up to much higher temperatures. In this regime, we find that the anisotropic resistance scales sublinearly with $B_{||}/T$. These observations support the proposal that the transition from anisotropic to isotropic transport reflects a liquid crystal phase transition where local stripe order persists even in the isotropic regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.