Abstract

Ca2+-influx through transient receptor potential (TRP) channels was proposed to be important in endothelial function, although the precise role of specific TRP channels is unknown. Here, we investigated the role of the putatively mechanosensitive TRPV4 channel in the mechanisms of endothelium-dependent vasodilatation. Expression and function of TRPV4 was investigated in rat carotid artery endothelial cells (RCAECs) by using in situ patch-clamp techniques, single-cell RT-PCR, Ca2+ measurements, and pressure myography in carotid artery (CA) and Arteria gracilis. In RCAECs in situ, TRPV4 currents were activated by the selective TRPV4 opener 4alpha-phorbol-12,13-didecanoate (4alphaPDD), arachidonic acid, moderate warmth, and mechanically by hypotonic cell swelling. Single-cell RT-PCR in endothelial cells demonstrated mRNA expression of TRPV4. In FURA-2 Ca2+ measurements, 4alphaPDD increased [Ca2+]i by &140 nmol/L above basal levels. In pressure myograph experiments in CAs and A gracilis, 4alphaPDD caused robust endothelium-dependent and strictly endothelium-dependent vasodilatations by &80% (K(D) 0.3 microL), which were suppressed by the TRPV4 blocker ruthenium red (RuR). Shear stress-induced vasodilatation was similarly blocked by RuR and also by the phospholipase A2 inhibitor arachidonyl trifluoromethyl ketone (AACOCF3). 4alphaPDD produced endothelium-derived hyperpolarizing factor (EDHF)-type responses in A gracilis but not in rat carotid artery. Shear stress did not produce EDHF-type vasodilatation in either vessel type. Ca2+ entry through endothelial TRPV4 channels triggers NO- and EDHF-dependent vasodilatation. Moreover, TRPV4 appears to be mechanistically important in endothelial mechanosensing of shear stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.