Abstract

Many studies on quorum quenching focus on the discovery and characterization of novel acyl-homoserine lactonases (AHL-lactonases) because these enzymes could be used in the control of diseases caused by Gram-negative bacteria. The effects of quorum quenching are also remarkable in the performance of bacterial consortia in applications such as bioremediation. In the current work, we demonstrated the presence of a potential novel AHL-lactonase-encoding locus (Bsph_3377) from Lysinibacillus sphaericus and Geobacillus sp. The deduced amino acid sequences for this enzyme possess the characteristic domains and motifs involved in Zn-binding from AHL lactonases and were grouped into 1 clade within the phylogeny of the lactonases from firmicutes, showing 70% of identity with the lactonase AhlS from Solibacillus silvestris. We demonstrated the locus transcription by RT-qPCR and its relationship with the suppression of the pathogenicity of Pectobacterium carotovorum. Additionally, we analyzed the interaction of these bacilli with a commercial consortium in the bioremediation of a hydrocarbon-contaminated soil, showing inhibitory effects on its establishment. These results represent a new contribution in the understanding of the potential biotechnological applications of L. sphaericus and Geobacillus sp. as well as in the research on antibacterial techniques based on quorum-sensing disruption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.