Abstract

Federated learning (FL) demonstrates significant potential in Industrial Internet of Things (IIoT) settings, as it allows multiple institutions to jointly construct a shared learning model by exchanging model parameters or gradient updates without the need to transmit raw data. However, FL faces risks related to data poisoning and model poisoning. To address these issues, we propose an efficient verifiable federated learning (EVFL) method, which integrates adaptive gradient sparsification (AdaGS), Boneh–Lynn–Shacham (BLS) signatures, and fully homomorphic encryption (FHE). The combination of BLS signatures and the AdaGS algorithm is used to build a secure aggregation protocol. These protocols verify the integrity of parameters uploaded by industrial agents and the consistency of the server’s aggregation results. Simulation experiments demonstrate that the AdaGS algorithm significantly reduces verification overhead through parameter sparsification and reuse. Our proposed algorithm achieves better verification efficiency compared to existing solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.