Abstract

In this article, the problem of event-based adaptive fuzzy fixed-time tracking control for a class of uncertain nonlinear systems with unknown virtual control coefficients (UVCCs) is considered. The unknown nonlinear functions of the considered systems are approximated by fuzzy-logic systems (FLSs). Moreover, a novel Lyapunov function is designed to remove the requirement of lower bounds of the UVCC in control laws. In addition, an event-triggered control method is developed by using the backstepping technique to save the network resources. Through theoretical analysis, the event-based fixed-time controller was proposed, which can guarantee that all signals of the controlled system are bounded and the tracking error can converge to a small neighborhood of the origin in a fixed time. Meanwhile, the convergence time is independent of the initial states. Two numerical examples are presented to demonstrate the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.