Abstract

This study is concerned with event-triggered fault tolerant control for a class of state-saturated systems subject to stochastic faults, unknown but bounded disturbances and deception attacks. After formulating stochastic faults, state saturations, and deception attacks, a hybrid system model is developed to facilitate analysis and design. An event-triggered transmission mechanism is proposed to decide whether the measurement values should be sent to the controller via wireless network. Since the sensor data is attacked by the adversary during the transmission, the actual measurement value received by the controller needs to be recalculated. Expressions of the dynamic output feedback controller are presented, and criteria are used to design a dynamic feedback controller to ensure that the system is uniformly ultimately bounded. To deal with the current problem, an algorithm is also developed and tested using the linear matrix inequality (LMI) toolbox. Finally, two numerical examples are given to illustrate the validity and effectiveness of the proposed strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.