Abstract
The real-time time series data of multiple water quality parameters are obtained from the water sensor networks deployed in the water supply network. The accurate and efficient detection and warning of contamination events to prevent pollution from spreading is one of the most important issues when the pollution occurs. In order to comprehensively reduce the event detection deviation, a Temporal Abnormal Event Detection Algorithm for Multivariate time series data (M-TAEDA) was proposed. In M-TAEDA, first, Back Propagation neural network models are adopted to analyze the time series data of multiple water quality parameters and calculate the possible outliers. Then, M-TAEDA algorithm determines the potential contamination events through Bayesian sequential analysis to estimate the probability of a contamination event. Finally, it can make decision based on the multiple event probabilities fusion in the water supply system. The experimental results indicate that the proposed M-TAEDA algorithm can obtain the 90% accuracy with BP neural network model and improve the rate of detection about 40% and reduce the false alarm rate about 45%, compared with the temporal event detection of Single Variate Temporal Abnormal Event Detection Algorithm (S-TAEDA).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.