Abstract
Real-life events are emerging and evolving in social and news streams. Recent methods have succeeded in capturing designed features of monolingual events, but lack of interpretability and multi-lingual considerations. To this end, we propose a multi-lingual event mining model, namely MLEM, to automatically detect events and generate evolution graph in multilingual hybrid-length text streams including English, Chinese, French, German, Russian and Japanese. Specially, we merge the same entities and similar phrases and present multiple similarity measures by incremental word2vec model. We propose an 8-tuple to describe event for correlation analysis and evolution graph generation. We evaluate the MLEM model using a massive human-generated dataset containing real world events. Experimental results show that our new model MLEM outperforms the baseline method both in efficiency and effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.