Abstract
Research in the field of the evaporation of liquid droplets placed on surfaces with special wetting properties such as biphilic surfaces is of great importance. This paper presents the results of an experimental study of the heat and mass transfer of a water droplet during its evaporation depending on the direction of the gravitational force. A special technique was developed to create unique substrates, which were used to physically simulate the interaction of liquid droplets with the surface at any angle of inclination to the horizontal. It was found that the suspended and sessile droplets exhibited fundamentally different evaporation dynamics. It was shown that the suspended droplets had a higher temperature and, at the same time, evaporated almost 30% faster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.