Abstract

Half-space problem of evaporation and condensation of a binary mixture of vapors is investigated on the basis of the linearized Boltzmann equation for hard-sphere molecules with the complete condensation condition. The problem is analyzed numerically by a finite-difference method, in which the complicated collision integrals are computed by the extension of the method proposed by Y. Sone, T. Ohwada, and K. Aoki [“Temperature jump and Knudsen layer in a rarefied gas over a plane wall: Numerical analysis of the linearized Boltzmann equation for hard-sphere molecules,” Phys. Fluids A 1, 363 (1989)] to the case of a gas mixture. As a result, the behavior of the mixture is clarified not only at the level of the macroscopic quantities but also at the level of the velocity distribution function. In addition, accurate formulas of the temperature, pressure, and concentration jumps caused by the evaporation and condensation are constructed for arbitrary values of the concentration of the background reference state by the use of the Chebyshev polynomial approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.