Abstract

Smart cities are considered to be one of the most important applications of the IoT notion. Most smart city applications rely fundamentally on ubiquitous sensing, enabled by Wireless Sensor Network (WSN) technologies. These sensor networks are vulnerable to different challenges that cause failures in some parts of the network, which in turn interfere with the availability of network services and weaken the user experience. In this paper, we introduce a graph-theoretic model of wireless sensor networks used in smart cities. Moreover, we present several challenges, such as natural disasters and random failures and evaluate the system's performance in terms of data delivery, end to end delay, and energy consumption. The evaluation results show that fire is the challenge that causes the most damage among the three challenges examined, while random failure has the least effect on network performance. The results also show that the modeled WSN's can cope well with the challenge of random failures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.