Evaluation of Wave Forecasts Consistent with Tropical Cyclone Warning Center Wind Forecasts
Abstract An algorithm to generate wave fields consistent with forecasts from the official U.S. tropical cyclone forecast centers has been made available in near–real time to forecasters since summer 2007. The algorithm removes the tropical cyclone from numerical weather prediction model surface wind field forecasts, replaces the removed winds with interpolated values from surrounding grid points, and then adds a surface wind field generated from the official forecast into the background. The modified wind fields are then used as input into the WAVEWATCH III model to provide seas consistent with the official tropical cyclone forecasts. Although this product is appealing to forecasters because of its consistency and its superior tropical cyclone track forecast, there has been only anecdotal evaluation of resulting wave fields to date. This study evaluates this new algorithm for two years’ worth of Atlantic tropical cyclones and compares results with those of WAVEWATCH III run with U.S. Navy Operational Global Atmospheric Prediction System (NOGAPS) surface winds alone. Results show that the new algorithm has generally improved forecasts of maximum significant wave heights and 12-ft seas’ radii in proximity to tropical cyclones when compared with forecasts produced using only the NOGAPS surface winds.
207
- 10.1175/1520-0477(2000)081<1231:tatcfs>2.3.co;2
- Jun 1, 2000
- Bulletin of the American Meteorological Society
18
- 10.1175/2010waf2222309.1
- Oct 1, 2010
- Weather and Forecasting
36
- 10.1175/waf851.1
- Aug 1, 2005
- Weather and Forecasting
578
- 10.1175/1520-0485(1991)021<0782:atgmfw>2.0.co;2
- Jun 1, 1991
- Journal of Physical Oceanography
28
- 10.1175/2010waf2222376.1
- Aug 1, 2010
- Weather and Forecasting
68
- 10.1175/waf849.1
- Jun 1, 2005
- Weather and Forecasting
344
- 10.1175/2008waf2222128.1
- Apr 1, 2009
- Weather and Forecasting
100
- 10.1016/0378-3839(93)90032-4
- May 1, 1993
- Coastal Engineering
66
- 10.1016/j.ocemod.2008.01.003
- Jan 1, 2008
- Ocean Modelling
- Research Article
84
- 10.1016/j.wse.2016.02.002
- Jan 1, 2016
- Water Science and Engineering
Improvement of wind field hindcasts for tropical cyclones
- Research Article
7
- 10.1016/j.oceaneng.2017.01.010
- Jan 19, 2017
- Ocean Engineering
A new non-parametric correction model and its applications to hindcasting wave data
- Research Article
1
- 10.1175/waf-d-13-00130.1
- Jun 1, 2014
- Weather and Forecasting
Abstract This paper presents a detailed hindcast for the generation and propagation of sea state variables—significant wave height Hs, peak period Tp, mean direction θ, and spectral shape γ –σ —associated with cyclonic events to numerically diagnose their possible hydrodynamic effects over the northeastern Atlantic. An example of such cyclonic events is Hurricane Gordon, which occurred during the second half of August 2012. Extreme hurricane-strength winds produced new and atypically low-frequency (about 14 s) packs of energy. The preexistent wave spectrum suddenly experienced an addition of low-frequency energy along the coast of Cádiz, Spain. This study presents the results of a comprehensive analysis developed to reconstruct the events produced by Hurricane Gordon (2012) along the coast of Cádiz. The analysis features the use of (i) parametric models for the characterization of hurricane winds and pressure fields, (ii) implementation of the Simulating Waves Nearshore (SWAN) model for the generation and propagation of waves in the northeast Atlantic Ocean, and (iii) its coupling with the MOPLA—taken from the Spanish acronym for wave propagation model, current, and morphodynamic evolution of beaches—model for the evaluation of longshore currents. The numerical wave characterization, generation, and propagation were validated with instrumental data from deep-water and coastal buoys.
- Research Article
23
- 10.1175/waf-d-16-0168.1
- Mar 20, 2017
- Weather and Forecasting
Abstract Forecasts of tropical cyclone (TC) surface wind structure have recently begun to show some skill, but the number of reliable forecast tools, mostly regional hurricane and select global models, remains limited. To provide additional wind structure guidance, this work presents the development of a statistical–dynamical method to predict tropical cyclone wind structure in terms of wind radii, which are defined as the maximum extent of the 34-, 50-, and 64-kt (1 kt = 0.514 m s−1) winds in geographical quadrants about the center of the storm. The basis for TC size variations is developed from an infrared satellite-based record of TC size, which is homogenously calculated from a global sample. The change in TC size is predicted using a statistical–dynamical approach where predictors are based on environmental diagnostics derived from global model forecasts and observed storm conditions. Once the TC size has been predicted, the forecast intensity and track are used along with a parametric wind model to estimate the resulting wind radii. To provide additional guidance for applications and users that require forecasts of central pressure, a wind–pressure relationship that is a function of TC motion, intensity, wind radii (i.e., size), and latitude is then applied to these forecasts. This forecast method compares well with similar wind structure forecasts made by global forecast and regional hurricane models and when these forecasts are used as a member of a simple consensus; its inclusion improves the forecast performance of the consensus.
- Research Article
35
- 10.1016/j.renene.2016.12.057
- Dec 23, 2016
- Renewable Energy
A wave model test bed study for wave energy resource characterization
- Research Article
21
- 10.1175/mwr-d-17-0379.1
- Jul 17, 2018
- Monthly Weather Review
Abstract This article explores the simultaneous effect of vertical wind shear (VWS) and low-level mean flow (LMF) on tropical cyclone (TC) structure evolution. The structural evolution of 180 western North Pacific TCs from 2002 to 2014 was measured by a new parameter, the RV ratio, which is defined as the ratio of a TC’s radius of 34-kt (17.5 m s−1) wind to its maximum wind speed at the ending point of the intensification period. Whereas TCs with RV ratios in the lowest quartile of all 180 samples favored intensification over expansion, and 82% of these TCs experienced rapid intensification, TCs with RV ratios in the topmost quartile favored size expansion over intensification. A novel result of this study is that TC RV ratios were found to correlate with the LMF orientation relative to the deep-layer VWS vector. Specifically, whereas an LMF directed toward the left-of-shear orientation favors TC intensification, a right-of-shear LMF favors TC size expansion. This study further analyzed the TC rainfall asymmetry and asymmetric surface flow using satellite observations. Results show that for a TC affected by an LMF with right-of-shear orientation, the positive surface flux anomaly in the upshear outer region promotes convection in the downshear rainband region. On the other hand, a left-of-shear LMF induces a positive surface flux anomaly in the downshear outer region, thus promoting convection in the upshear inner core. Enhancement of the symmetric inner-core convection favors intensification, whereas enhancement of the downshear rainband favors expansion.
- Research Article
16
- 10.1002/2014gl059368
- Apr 1, 2014
- Geophysical Research Letters
Tropical cyclones (TCs) in a monsoonal environment may have heavy rain events separate from the eyewall rainfall. Two types of long-lasting rainbands in western North Pacific TCs interacting with the East Asia summer monsoon during 1999–2009 are identified and the effects of these rainbands on TC size and intensity changes are examined. For all of the south-type Outer Mesoscale Convective Systems as defined in our previous study, the TC intensification rate is decreased but the rate of size change is not modified. Long-lasting south-type Enhanced Rainbands (ERBs) that develop between 100 and 300 km radii and move cyclonically are associated with significant TC size increases. Seventy percent of very large typhoons had an ERB during the period when they intensified from tropical storms to typhoons.
- Research Article
37
- 10.1175/jtech-d-14-00012.1
- Oct 1, 2014
- Journal of Atmospheric and Oceanic Technology
Abstract On 31 December 2012, an instrumented autonomous surface vehicle (ASV; Wave Glider) transiting across the Pacific from Hawaii to Australia as part of the Pacific Crossing (PacX) project came very close (46 km) to the center of a category 3 Tropical Cyclone (TC), Freda, experiencing winds of up to 37 and significant wave heights close to 10 m. The Wave Glider was instrumented for surface ocean–lower atmosphere (SOLA) measurements, including atmospheric pressure, surface winds and temperature, sea surface temperature, salinity, dissolved oxygen, fluorescence (chlorophyll-a and turbidity), and surface-wave directional spectra. Such measurements in close proximity to a tropical cyclone are rare. This study presents novel observations of the ocean’s response in three quadrants of TC Freda, collected from the instrumented glider. Evolution of the wind, the directional wave field, the sea surface temperature, and the Stokes drift profile (calculated from the wave directional spectrum) as Freda passed near the vehicle are examined. Results are discussed in the context of the recent coupled wind-wave modeling and large eddy simulation (LES) modeling of the marine boundary layer in Hurricane Frances (Sullivan et al. 2012). Processes by which cold nutrient-rich waters are entrained and mixed from below into the mixed layer as the TC passes near the Wave Glider are presented and discussed. The results of this encounter of an autonomous surface vehicle with TC Freda supports the use of ASVs for regular TC (hurricane) monitoring to complement remote sensing and “hurricane hunter” aircraft missions.
- Research Article
12
- 10.1175/waf-d-15-0093.1
- Dec 1, 2016
- Weather and Forecasting
Abstract Development of a 12-ft-seas significant wave height ensemble consistent with the official tropical cyclone intensity, track, and wind structure forecasts and their errors from the operational U.S. tropical cyclone forecast centers is described. To generate the significant wave height ensemble, a Monte Carlo wind speed probability algorithm that produces forecast ensemble members is used. These forecast ensemble members, each created from the official forecast and randomly sampled errors from historical official forecast errors, are then created immediately after the official forecast is completed. Of 1000 forecast ensemble members produced by the wind speed algorithm, 128 of them are selected and processed to produce wind input for an ocean surface wave model. The wave model is then run once per realization to produce 128 possible forecasts of significant wave height. Probabilities of significant wave height at critical thresholds can then be computed from the ocean surface wave model–generated significant wave heights. Evaluations of the ensemble are provided in terms of maximum significant wave height and radius of 12-ft significant wave height—two parameters of interest to both U.S. Navy meteorologists and U.S. Navy operators. Ensemble mean errors and biases of maximum significant wave height and radius of 12-ft significant wave height are found to be similar to those of a deterministic version of the same algorithm. Ensemble spreads capture most verifying maximum and radii of 12-ft significant wave heights.
- Conference Article
4
- 10.23919/icif.2018.8455762
- Jul 1, 2018
Routing in uncertain environments is challenging as it involves a number of contextual elements, such as different environmental conditions (forecast realizations with varying spatial and temporal uncertainty), changes in mission goals while en route, and asset status. In this paper, we use an approximate dynamic programming method with Q-factors to determine a cost-to-go approximation by treating the weather forecast realization information as a stochastic state. These types of algorithms take a large amount of offline computation time to determine the cost-to-go approximation, but once obtained, the online route recommendation is nearly instantaneous and several orders of magnitude faster than previously proposed ship routing algorithms. The proposed algorithm is robust to the uncertainty present in the weather forecasts. We compare this algorithm to a well-known shortest path algorithm and apply the approach to a real-world shipping tragedy using weather forecast realizations available prior to the event.
- Research Article
87
- 10.1175/1520-0434(1994)009<0557:aostco>2.0.co;2
- Dec 1, 1994
- Weather and Forecasting
In June 1990, the assimilation of synthetic tropical cyclone observations into the Navy Operational Global Atmospheric Prediction System (NOGAPS) was initiated at Fleet Numerical Oceanography Center (FNOC). These observations are derived directly from the information contained in the tropical cyclone warnings issued by the Joint Typhoon Warning Center (JTWC) and the National Hurricane Center. This paper describes these synthetic observations, the evolution of their use at FNOC, and the details of their assimilation into NOGAPS. The results of a comprehensive evaluation of the 1991 NOGAPS tropical cyclone forecast performance in the western North Pacific are presented. NOGAPS analysis and forecast position errors were determined for all tropical circulations of tropical storm strength or greater. It was found that, after the assimilation of synthetic observations, the NOGAPS spectral forecast model consistently maintained the tropical circulations as evidenced by detection percentages of 96%, 90% ...
- Research Article
32
- 10.1175/1520-0434(1993)008<0003:aeotrt>2.0.co;2
- Mar 1, 1993
- Weather and Forecasting
The paper evaluates the meteorological quality and operational utility of the Navy Operational Global Atmospheric Prediction System (NOGAPS) in forecasting tropical cyclones. It is shown that the model can provide useful predictions of motion and formation on a real-time basis in the western North Pacific. The meterological characteristics of the NOGAPS tropical cyclone predictions are evaluated by examining the formation of low-level cyclone systems in the tropics and vortex structure in the NOGAPS analysis and verifying 72-h forecasts. The adjusted NOGAPS track forecasts showed equitable skill to the baseline aid and the dynamical model. NOGAPS successfully predicted unusual equatorward turns for several straight-running cyclones.
- Research Article
29
- 10.1175/2009jas3063.1
- Nov 1, 2009
- Journal of the Atmospheric Sciences
In this study, the leading singular vectors (SVs), which are the fastest-growing perturbations (in a linear sense) to a given forecast, are used to examine and classify the dynamic relationship between tropical cyclones (TCs) and synoptic-scale environmental features that influence their evolution. Based on the 72 two-day forecasts of the 18 western North Pacific TCs in 2006, the SVs are constructed to optimize perturbation energy within a 20° × 20° latitude–longitude box centered on the 48-h forecast position of the TCs using the Navy Operational Global Atmospheric Prediction System (NOGAPS) forecast and adjoint systems. Composite techniques are employed to explore these relationships and highlight how the dominant synoptic-scale features that impact TC forecasts evolve on seasonal time scales. The NOGAPS initial SVs show several different patterns that highlight the relationship between the TC forecast sensitivity and the environment during the western North Pacific typhoon season in 2006. In addition to the relation of the SV maximum to the inward flow region of the TC, there are three patterns identified where the local SV maxima collocate with low-radial-wind-speed regions. These regions are likely caused by the confluence of the flow associated with the TC itself and the flow from other synoptic systems, such as the subtropical high and the midlatitude jet. This is the new finding beyond the previous NOGAPS SV results on TCs. The subseasonal variations of these patterns corresponding to the dynamic characteristics are discussed. The SV total energy vertical structures for the different composites are used to demonstrate the contributions from kinetic and potential energy components of different vertical levels at initial and final times.
- Research Article
39
- 10.1175/2008mwr2652.1
- Apr 1, 2009
- Monthly Weather Review
Singular vectors (SVs) are used to study the sensitivity of 2-day forecasts of recurving tropical cyclones (TCs) in the western North Pacific to changes in the initial state. The SVs are calculated using the tangent and adjoint models of the Navy Operational Global Atmospheric Prediction System (NOGAPS) for 72 forecasts for 18 TCs in the western North Pacific during 2006. In addition to the linear SV calculation, nonlinear perturbation experiments are also performed in order to examine 1) the similarity between nonlinear and linear perturbation growth and 2) the downstream impacts over the North Pacific and North America that result from changes to the 2-day TC forecast. Both nonrecurving and recurving 2-day storm forecasts are sensitive to changes in the initial state in the near-storm environment (in an annulus approximately 500 km from the storm center). During recurvature, sensitivity develops to the northwest of the storm, usually associated with a trough moving in from the west. These upstream sensitivities can occur as far as 4000 km to the northwest of the storm, over the Asian mainland, which has implications for adaptive observations. Nonlinear perturbation experiments indicate that the linear calculations reflect case-to-case variability in actual nonlinear perturbation growth fairly well, especially when the growth is large. The nonlinear perturbations show that for recurving tropical cyclones, small initial perturbations optimized to change the 2-day TC forecast can grow and propagate downstream quickly, reaching North America in 5 days. The fastest 5-day perturbation growth is associated with recurving storm forecasts that occur when the baroclinic instability over the North Pacific is relatively large. These results suggest that nonlinear forecasts perturbed using TC SVs may have utility for predicting the downstream impact of TC forecast errors over the North Pacific and North America.
- Research Article
36
- 10.1175/2008mwr2601.1
- Jan 1, 2009
- Monthly Weather Review
The tropical cyclone (TC) track forecasts of the Navy Operational Global Atmospheric Prediction System (NOGAPS) were evaluated for a number of data assimilation experiments conducted using observational data from two periods: 4 July–31 October 2005 and 1 August–30 September 2006. The experiments were designed to illustrate the impact of different types of satellite observations on the NOGAPS TC track forecasts. The satellite observations assimilated in these experiments consisted of feature-track winds from geostationary and polar-orbiting satellites, Special Sensor Microwave Imager (SSM/I) total column precipitable water and wind speeds, Advanced Microwave Sounding Unit-A (AMSU-A) radiances, and Quick Scatterometer (QuikSCAT) and European Remote Sensing Satellite-2 (ERS-2) scatterometer winds. There were some differences between the results from basin to basin and from year to year, but the combined results for the 2005 and 2006 test periods for the North Pacific and Atlantic Ocean basins indicated that the assimilation of the feature-track winds from the geostationary satellites had the most impact, ranging from 7% to 24% improvement in NOGAPS TC track forecasts. This impact was statistically significant at all forecast lengths. The impact of the assimilation of SSM/I precipitable water was consistently positive and statistically significant at all forecast lengths. The improvements resulting from the assimilation of AMSU-A radiances were also consistently positive and significant at most forecast lengths. There were no significant improvements/degradations from the assimilation of the other satellite observation types [e.g., Moderate Resolution Imaging Spectroradiometer (MODIS) winds, SSM/I wind speeds, and scatterometer winds]. The assimilation of all satellite observations resulted in a gain in skill of roughly 12 h for the NOGAPS 48- and 72-h TC track forecasts and a gain in skill of roughly 24 h for the 96- and 120-h forecasts. The percent improvement in these forecasts ranged from almost 20% at 24 h to over 40% at 120 h.
- Research Article
39
- 10.1175/1520-0434(2002)017<0800:tcfotw>2.0.co;2
- Aug 1, 2002
- Weather and Forecasting
A set of criteria is developed to identify tropical cyclone (TC) formations in the Navy Operational Global Atmospheric Prediction System (NOGAPS) analyses and forecast fields. Then the NOGAPS forecasts of TC formations from 1997 to 1999 are verified relative to a formation time defined to be the first warning issued by the Joint Typhoon Warning Center. During these three years, the spatial distributions of TC formations were strongly affected by an El Nino–Southern Oscillation event. The successful NOGAPS predictions of formation within a maximum separation threshold of 4° latitude are about 70%–80% for 24-h forecasts, and drop to about 20%–30% for 120-h forecasts. The success rate is higher for formations in the South China Sea and between 160°E and 180° but is generally lower between 120° and 160°E. The composite 850-hPa large-scale flow for the formations between 120° and 160°E is similar to a monsoon confluence region with marked cross-equatorial flow. Therefore, it is concluded that the skil...
- Research Article
19
- 10.1175/2009waf2222292.1
- Apr 1, 2010
- Weather and Forecasting
As part of The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC) and the Office of Naval Research’s (ONR’s) Tropical Cyclone Structure-08 (TCS-08) experiments, a variety of real-time products were produced at the Naval Research Laboratory during the field campaign that took place from August through early October 2008. In support of the targeted observing objective, large-scale targeting guidance was produced twice daily using singular vectors (SVs) from the Navy Operational Global Atmospheric Prediction System (NOGAPS). These SVs were optimized for fixed regions centered over Guam, Taiwan, Japan, and two regions over the North Pacific east of Japan. During high-interest periods, flow-dependent SVs were also produced. In addition, global ensemble forecasts were produced and were useful for examining the potential downstream impacts of extratropical transitions. For mesoscale models, TC forecasts were produced using a new version of the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) developed specifically for tropical cyclone prediction (COAMPS-TC). In addition to the COAMPS-TC forecasts, mesoscale targeted observing products were produced using the COAMPS forecast and adjoint system twice daily, centered on storms of interest, at a 40-km horizontal resolution. These products were produced with 24-, 36-, and 48-h lead times. The nonhydrostatic adjoint system used during T-PARC/TCS-08 contains an exact adjoint to the explicit microphysics. An adaptive response function region was used to target favorable areas for tropical cyclone formation and development. Results indicate that forecasts of tropical cyclones in the western Pacific are very sensitive to the initial state.
- Conference Article
- 10.1109/hpcmp-ugc.2009.44
- Jun 1, 2009
In support of The Observing-system Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC) and the Office of Naval Research (ONR) Tropical Cyclone Structure-08 (TCS-08) experiments, a variety of real-time products were produced at the Naval Research Laboratory during the field campaign that took place from August through early October 2008. In support of the targeted observing objective, large-scale targeting guidance was produced twice daily using singular vectors (SVs) from the Navy Operational Global Atmospheric Prediction System (NOGAPS). For mesoscale models, TC forecasts were produced using a new version of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) developed specifically for tropical cyclone prediction (COAMPS-TC). In addition to the COAMPSTC forecasts, mesoscale targeted observing products were produced using the COAMPS forecast and adjoint system twice daily, centered on storms of interest.
- Research Article
20
- 10.1175/waf1002.1
- Jun 1, 2007
- Weather and Forecasting
The Joint Typhoon Warning Center has been issuing 96- and 120-h track forecasts since May 2003. It uses four dynamical models that provide guidance at these forecast intervals and relies heavily on a consensus of these four models in producing the official forecast. Whereas each of the models has skill, each occasionally has large errors. The objective of this study is to provide a characterization of these errors in the western North Pacific during 2004 for two of the four models: the Navy Operational Global Atmospheric Prediction System (NOGAPS) and the U.S. Navy’s version of the Geophysical Fluid Dynamics Laboratory model (GFDN). All 96- and 120-h track errors greater than 400 and 500 n mi, respectively, are examined following the approach developed recently by Carr and Elsberry. All of these large-error cases can be attributed to the models not properly representing the physical processes known to control tropical cyclone motion, which were classified in a series of conceptual models by Carr and Elsberry for either tropical-related or midlatitude-related mechanisms. For those large-error cases where an error mechanism could be established, midlatitude influences caused 83% (85%) of the NOGAPS (GFDN) errors. The most common tropical influence is an excessive direct cyclone interaction in which the tropical cyclone track is erroneously affected by an adjacent cyclone. The most common midlatitude-related errors in the NOGAPS tracks arise from an erroneous prediction of the environmental flow dominated by a ridge in the midlatitudes. Errors in the GFDN tracks are caused by both ridge-dominated and trough-dominated environmental flows in the midlatitudes. Case studies illustrating the key error mechanisms are provided. An ability to confidently identify these error mechanisms and thereby eliminate likely erroneous tracks from the consensus would improve the accuracy of 96- and 120-h track forecasts.
- Research Article
78
- 10.1175/1520-0493(2004)132<1254:rmotec>2.0.co;2
- May 1, 2004
- Monthly Weather Review
The convective parameterization of Emanuel has been employed in the forecast model of the Navy Operational Global Atmospheric Prediction System (NOGAPS) since 2000, when it replaced a version of the relaxed Arakawa–Schubert scheme. Although in long-period data assimilation forecast tests the Emanuel scheme has been found to perform quite well in NOGAPS, particularly for tropical cyclones, some weaknesses have also become apparent. These weaknesses include underprediction of heavy-precipitation events, too much light precipitation, and unrealistic heating at upper levels. Recent research efforts have resulted in modifications of the scheme that are designed to reduce such problems. One change described here involves the partitioning of the cloud-base mass flux into mixing cloud mass flux at individual levels. The new treatment significantly reduces a heating anomaly near the tropopause that is associated with a large amount of mixing cloud mass flux ascribed to that region in the original Emanuel ...
- Research Article
24
- 10.1016/j.jmarsys.2009.01.020
- Feb 28, 2009
- Journal of Marine Systems
Optimizing surface winds using QuikSCAT measurements in the Mediterranean Sea during 2000–2006
- Research Article
386
- 10.1175/1520-0493(2003)131<0585:acpsdf>2.0.co;2
- Apr 1, 2003
- Monthly Weather Review
An objectively defined three-dimensional cyclone phase space is proposed and explored. Cyclone phase is described using the parameters of storm-motion-relative thickness asymmetry (symmetric/nonfrontal versus asymmetric/frontal) and vertical derivative of horizontal height gradient (cold- versus warm-core structure via the thermal wind relationship). A cyclone's life cycle can be analyzed within this phase space, providing substantial insight into the cyclone structural evolution. An objective classification of cyclone phase is possible, unifying the basic structural description of tropical, extratropical, and hybrid cyclones into a continuum. Stereotypical symmetric warm-core (tropical cyclone) and asymmetric cold-core (extratropical cyclone) life cycles are illustrated using 1° Navy Operational Global Atmospheric Prediction System (NOGAPS) operational analyses and 2.5° NCEP–NCAR reanalyses. The transitions between cyclone phases are clearly illustrated within the phase space, including extratro...
- Conference Article
4
- 10.1109/igarss.2002.1025693
- Nov 7, 2002
The major weather services worldwide have concluded that longer-term tropospheric weather forecasting will require a more realistic treatment of the stratosphere. A major research effort is now underway at the Naval Research Laboratory (NRL) to extend the Navy Operational Global Atmospheric Prediction System (NOGAPS) into the stratosphere. The extended NOGAPS must assimilate and forecast ozone because absorption of UV radiation by ozone provides the primary energy input into the stratosphere. This energy input is a major driver of the stratospheric circulation, which, in turn, significantly affects the large-scale movement of surface weather systems. Operational ozone data for the extended NOGAPS will be obtained from the NPOESS Ozone Mapping and Profiler Suite (OMPS). OMPS consists of a nadir-viewing instrument that measures the ozone total column and profile (similar to TOMS & SBUV/2), and a limb-viewing instrument designed to measure the ozone profile between the tropopause and 60 km. OMPS-like ozone data are needed for developing and testing the extensions to NOGAPS. We have proposed an early flight of OMPS, OMPS-AE (OMPS-Assimilation Experiment), to provide such data. We are also exploring techniques for merging and extending data from existing satellite measurements of ozone profiles to produce 3D global ozone fields. In the future we will conduct experiments in which the global ozone fields from OMPS-AE or the data fusion experiments will be assimilated into the extended NOGAPS, with the aim of evaluating assimilation methodologies and increased forecasting skill.
- Research Article
29
- 10.1175/2010waf2222421.1
- Dec 1, 2010
- Weather and Forecasting
A very strong Arctic major sudden stratospheric warming (SSW) event occurred in late January 2009. The stratospheric temperature climbed abruptly and the zonal winds reversed direction, completely splitting the polar stratospheric vortex. A hindcast of this event is attempted by using the Navy Operational Global Atmospheric Prediction System (NOGAPS), which includes the full stratosphere with its top at around 65 km. As Part I of this study, extended-range (3 week) forecast experiments are performed using NOGAPS without the aid of data assimilation. A unified parameterization of orographic drag is designed by combining two parameterization schemes; one by Webster et al., and the other by Kim and Arakawa and Kim and Doyle. With the new unified orographic drag scheme implemented, NOGAPS is able to reproduce the salient features of this Arctic SSW event owing to enhanced planetary wave activity induced by more comprehensive subgrid-scale orographic drag processes. The impact of the SSW on the tropospheric circulation is also investigated in view of the Arctic Oscillation (AO) index, which calculated using 1000-hPa geopotential height. The NOGAPS with upgraded orographic drag physics better simulates the trend of the AO index as verified by the Met Office analysis, demonstrating its improved stratosphere–troposphere coupling. It is argued that the new model is more suitable for forecasting SSW events in the future and can serve as a tool for studying various stratospheric phenomena.
- Research Article
25
- 10.1109/tgrs.2006.882251
- Feb 1, 2007
- IEEE Transactions on Geoscience and Remote Sensing
A multistage projection pursuit (PP) approach is applied to the classification of tropical cyclones (TCs) during extratropical transition (ET) using 500-hPa Navy Operational Global Atmospheric Prediction System (NOGAPS) geopotential height analyses. PP algorithms reduce the dimensionality of the high-dimensional data while minimizing the loss of information that discriminates among classes of ET types. In this paper, a prediction system is developed for ET TC classification and is applied to 85 western North Pacific storms during 1997-2004 using NOGAPS geopotential height analyses to group them as either intensifiers or dissipators. A classification is developed based on the 1997-2002 analyses, and the forecasting performance of the technique is tested on the storms from 2003 and 2004 in two different ways. In the first, the technique is applied at individual times utilizing just spatial information. In the second, the change in spatial patterns with time is taken into account with spatiotemporal algorithms. The preliminary classification results are slightly less accurate than those of NOGAPS but are found to be promising, and further possible improvements are discussed
- New
- Research Article
- 10.1175/waf-d-25-0098.1
- Nov 7, 2025
- Weather and Forecasting
- New
- Research Article
- 10.1175/waf-d-24-0230.1
- Nov 1, 2025
- Weather and Forecasting
- New
- Research Article
- 10.1175/waf-d-24-0249.1
- Nov 1, 2025
- Weather and Forecasting
- New
- Research Article
- 10.1175/waf-d-24-0204.1
- Nov 1, 2025
- Weather and Forecasting
- New
- Research Article
- 10.1175/waf-d-25-0071.1
- Nov 1, 2025
- Weather and Forecasting
- New
- Research Article
- 10.1175/waf-d-24-0098.1
- Nov 1, 2025
- Weather and Forecasting
- New
- Research Article
- 10.1175/waf-d-25-0049.1
- Nov 1, 2025
- Weather and Forecasting
- New
- Research Article
- 10.1175/waf-d-24-0156.1
- Nov 1, 2025
- Weather and Forecasting
- New
- Research Article
- 10.1175/waf-d-24-0118.1
- Nov 1, 2025
- Weather and Forecasting
- New
- Research Article
- 10.1175/waf-d-25-0086.1
- Nov 1, 2025
- Weather and Forecasting
- Ask R Discovery
- Chat PDF
AI summaries and top papers from 250M+ research sources.