Abstract
These days, with the significant increase in the use of renewable energy sources as additional energy sources connected to the distribution network, many challenges and difficulties arise in ensuring sustainability and reliability. The generation, transmission and distribution, in the current state of the electricity system, are facing quite dynamic changes. They are the result of the liberalization of the energy market, the increased use of renewable energy sources such as photovoltaic systems, wind turbines and the charging stations for hybrid and electric vehicles. The most important factors are related to the balancing of the energy system, the analysis of voltage stability, overcoming the consequences of the increase in short-circuit currents, increasing the transmission capacities of the system forming and distribution networks, as well as the accurate forecasting of the development of loads and consumption over the coming years. This article presents an analysis of the voltage stability in a smart microgrid for two different scenarios. The studied cases describe a linear low-voltage p-type microgrid with loads connected to it at different nodes. Data on the type and cross-section of the conductors of the studied power line are presented. Simulation studies were carried out to determine the limits of grid voltage stability when connecting photovoltaic plants with a set power. The simulation results are commented on and an analysis of the optimal operating mode of the system is realized. The model studies were implemented in the NEPLAN program environment. The research carried out allows an evaluation of the permissible limits for network stability when connecting photovoltaic plants. Through this evaluation, it can be determined how many and at which node the loads should be connected without causing an imbalance in the network. This is useful from the point of view of ensuring the sustainability and reliability of electrical energy in a microgrid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.