Abstract
The aim of this study was to evaluate the performance of various boar taint detection methods, measure the relationship between them and identify possible points of improvement for boar taint detection. The methods used to evaluate boar taint in the carcasses of 448 entire male pigs and 17 barrows were the hot iron method (n = 442), a standardised (n = 323) and home (n = 58) consumer meat-evaluation panel, an expert panel assessment of meat and fat (n = 464) and laboratory analysis of skatole, androstenone and indole in fat (n = 464). The axillary odour of a number of slaughtered entire male pigs was also investigated (n = 231). As correlation coefficients were generally weak, a positive result for one of these detection methods did not per se result in a positive result for all other methods. Results of one detection method could not be generalised. The choice to use one or more detection methods deserves consideration depending on the aim of the study. In this paper, we suggest some possible improvements for evaluating boar taint with a consumer panel based on our results and experience. The home consumer evaluation was correlated with the concentration of indole (r = 0.27) but not with skatole or androstenone. We therefore recommend that lab analyses include indole testing. The hot iron method seems to be an easy and fast detection method, which yields comparable or better correlation coefficients with the other detection methods than an expert panel evaluating fat samples. However, the reliability of the hot iron method depends on the training and reliability of one or two assessors. Efforts should be made to further optimise this method by evaluating the effect of testing conditions. The axillary odour score was moderately correlated with the other detection methods (up to 0.32). More research is needed to evaluate the possibilities of axillary odour as a boar taint detection method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.