Abstract

The global coronavirus (CoV) disease 2019 (COVID-19) pandemic has resulted in a worldwide shortage of viral transport media and raised questions about specimen stability. The objective of this study was to determine the stability of severe acute respiratory syndrome CoV 2 (SARS-CoV-2) RNA in specimen transport media under various storage conditions. Transport media tested included UTM, UTM-RT, ESwab, M4, and saline (0.9% NaCl). Specimen types tested included nasopharyngeal/oropharyngeal swabs in the above-named transport media, bronchoalveolar lavage (BAL) fluid, and sputum. A high-titer SARS-CoV-2 remnant patient specimen was spiked into pooled SARS-CoV-2 RNA-negative specimen remnants for the various medium types. Aliquots of samples were stored at 18°C to 26°C, 2°C to 8°C, and -10°C to -30°C and then tested at time points up to 14 days. Specimens consistently yielded amplifiable RNA with mean cycle threshold differences of <3 over the various conditions assayed, thus supporting the use and transport of alternative collection media and specimen types under a variety of temperature storage conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.