Abstract

The physicochemical characteristics of intravenous iron complexes affect the extent of weakly-bound iron and thus the degree of oxidative stress. The new preparation iron isomaltoside 1000 (IIM) was compared to iron sucrose (IS) and a control group in terms of biochemistry, oxidative stress, inflammatory markers and iron deposition in the liver, heart and kidneys of healthy rats. Renal function was significantly impaired in the IIM group versus both IS and controls. Liver enzymes were also significantly higher in IIM-treated animals versus the other groups, indicative of hepatic injury. Systolic blood pressure was significantly lower following IIM administration compared to IS or control animals. Oxidative stress in the liver, heart and kidneys was greater in the IIM group, as indicated by significantly increased levels of malondialdehyde and antioxidant enzyme activity, accompaniedby a significantly lower ratio of reduced to oxidized glutathione. Microscopy demonstrated more extensive positive staining for iron, and a smaller area of ferritin staining, in the liver, heart and kidneys of rats treated with IIM versus IS.Levels of the inflammatory markers TNF-alpha and IL6 were both significantly higher in the IIM group versus IS in all assessed tissues. These findings indicate that IIM has a less favorable safety profile than IS in healthy rats, adversely affecting iron deposition, oxidative stress and inflammatory responses, with impaired liver and renal function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.