Abstract

The air Wells turbine is one of the most prevalent and promising wave energy harvesting systems. Wells turbine converts the reciprocating energy of the ocean and sea waves into mechanical energy. However, it is characterized by low performance, a narrow operating range, and low efficiency. In this article, the effect of a number of through holes that are distributed along the blade span was evaluated. Typically, the number of holes, diameter, and position from the trailing edge were subjected in this parametric study. The performance parameters of the turbine ( The torque coefficient, turbine efficiency, and stagnation pressure drop coefficient ) were numerically studied at various flow coefficient values to express the Wells turbine performance. The CFD results for a tested turbine model with a blade profile of NACA0015 and solidity of 0.644 were validated against published experimental data. It was found that a turbine blade with seven holes of 2%C in diameter and attached at a distance of 2%C from the trailing edge demonstrated the best performance characteristics. Furthermore, the new through holes blade increased the maximum value of torque coefficient by 1.16 compared to the conventional blade at a flow coefficient of 0.225.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.