Abstract

The cause and amount of error arising from the use of the scalar approximation in monochromatic optical wave propagation are discussed using a signals and systems formulation. Based on Gauss’s Law, the longitudinal component of an electric field is computed from the transverse components by passing the latter through a two input single output linear shift-invariant system. The system is analytically characterized both in the space and frequency domains. For propagating waves, the large response for the frequencies near the limiting wave number indicates the small angle requirement for the validity of the scalar approximation. Also, a discrete simulator is developed to compute the longitudinal component from the transverse components for monochromatic propagating electric fields. The simulator output helps to evaluate the validity of the scalar approximation when the system output cannot be analytically calculated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.