Abstract

We propose a method for the evaluation of the theoretical strength of metal under the conditions of tension and shear. The first of these strengths is determined by comparing the strain energy at the time of fracture with the energy losses required for evaporation. The second strength (obtained on the basis of the data of observations of Luders lines with the help of an electron microscope; × 5000) is found by comparing the strain energy with the energy spent for melting of the metal. The proposed computational formulas do not require additional assumptions about the ultimate strains. We computed the theoretical strength for aluminum, iron, copper, nickel, lead, and zinc. We also experimentally determined the actual strength of 65G steel and its ultimate strain, which coincides with the theoretical value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.