Abstract

Abstract The partitioning of the earth radiation budget (ERB) between its atmosphere and surface components is of crucial interest in climate studies as it has a significant role in the oceanic and atmospheric general circulation. An analysis of the present-day climate simulation of the surface radiation budget in the atmospheric component of the new Hadley Centre Global Environmental Model version 1 (HadGEM1) is presented, and the simulations are assessed by comparing the results with fluxes derived from satellite data from the International Satellite Cloud Climatology Project (ISCCP) and ground measurements from the Baseline Surface Radiation Network (BSRN). Comparisons against radiative fluxes from satellite and ground observations show that the model tends to overestimate the surface incoming solar radiation (Ss,d). The model simulates Ss,d very well over the polar regions. Consistency in the comparisons against BSRN and ISCCP-FD suggests that the ISCCP-FD database is a good test for the performance of the surface downwelling solar radiation in climate model simulations. Overall, the simulation of downward longwave radiation is closer to observations than its shortwave counterpart. The model underestimates the downward longwave radiation with respect to BSRN measurements by 6.0 W m−2. Comparisons of land surface albedo from the model and estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS) show that HadGEM1 overestimates the land surface albedo over deserts and over midlatitude landmasses in the Northern Hemisphere in January. Analysis of the seasonal cycle of the land surface albedo in different regions shows that the amplitude and phase of the seasonal cycle are not well represented in the model, although a more extensive validation needs to be carried out. Two decades of coupled model simulations of the twentieth-century climate are used to look into the model’s simulation of global dimming/brightening. The model results are in line with the conclusions of the studies that suggest that global dimming is far from being a uniform phenomenon across the globe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.