Abstract

Laboratory radial in- and out-diffusion experiments were performed to investigate the reversibility of the iodide (I-) uptake by argillaceous rocks from the Tournemire site (France). At first, the suitability of the method was demonstrated by means of deuterium depleted water (DDW) diffusion experiments. The values for the DDW effective diffusion coefficient (1.7 to 2.7×10-11m2s-1) are indeed very close to those obtained from previous through-diffusion experiments carried out on Tournemire samples with tritiated water. The diffusion of chloride and bromide led to the determination of halide-accessible porosities, which are necessary to calculate the retardation factor (R) and the distribution ratio (RD). The calculated values for the halide-accessible porosity (2 to 5%) clearly indicated the effect of anionic exclusion and are consistent with previous data. On the contrary, the in-diffusion experiments performed with iodide clearly showed its uptake by argillite, with rock capacity factor values ranging from 14% to 25%. The corresponding values ofRD(0.035 to 0.08 L kg-1) are one order of magnitude lower than those previously derived from batch methods. At last, the experiments of iodide out-diffusion revealed that only iodide located in the halide-accessible porosity diffused out of the rock samples, suggesting that the uptake of iodide by argillite would not be reversible or that the kinetics of desorption would be low (>70 days).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.