Abstract

A new, fast and easy method for analysing the potential for improving reactor performance by replacing steady state by forced periodic operation is presented. The method is based on Volterra series, generalized Fourier transform and the concept of higher-order frequency response functions (FRFs). The second order frequency response function, which corresponds to the dominant term of the non-periodic (DC) component, G 2( ω, − ω), is mainly responsible for the average performance of the periodically operated processes. Based on that, in order to evaluate the potential of periodic reactor operation, it is enough to derive and analyze G 2( ω, − ω). The sign of this function defines the sign of the DC component and reveals whether a performance improvement by cycling is possible compared to optimal steady state process. The method is used to analyze the periodic performance of a continuous stirred tank reactor (CSTR), a plug flow tubular reactor (PFTR) and a dispersive flow tubular reactor (DFTR), after introducing periodic changes of the input concentrations. A homogeneous, n-th order reaction is studied under isothermal conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.