Abstract

ABSTRACT Among many sources of errors that influence Global Navigation Satellite System (GNSS) observations, tropospheric delay is one of the most significant. It causes nonrefractive systematic bias in the observations on the level of several meters, depending on the atmospheric conditions. Tropospheric delay modelling plays an important role in precise positioning. The current models use numerical weather data for precise estimation of the parameters that are provided as a part of the Global Geodetic Observation System (GGOS). The purpose of this paper is to analyze the tropospheric data provided by the GGOS Atmosphere Service conducted by the Vienna University of Technology. There are predicted and final delay data available at the Service. In real time tasks, only the predicted values can be used. Thus it is very useful to study accuracy of the forecast delays. Comparison of data sets based on predicted and real weather models allows for conclusions concerning possibility of using the former for real time positioning applications. The predicted values of the dry tropospheric delay component, both zenith and mapped, can be safely used in real time PPP applications, but on the other hand, while using the wet predicted values, one should be very careful.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.