Abstract

Here, ternary and quaternary polyaniline (PANI) based nanocomposites were synthesized, via reduction of platinum nanoparticles into a modified PANI with graphene nanosheets (GNS) and/or carbon nanotubes (CNT). The morphology and chemical composition of the prepared nanocomposites were characterized by using XRD, EDXA, FT-IR, SEM, and TEM techniques. The electrochemical properties of the resulting nanocomposites in comparison to pure PANI were systematically studied by using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) tests, for the first time. A remarkable average electrode specific capacity as 3450C g−1 (based on PANI/GNS/CNT/Pt nanocomposites) was obtained in 1 M H2SO4 solution in comparison to 1123, 952, 366 and 284C g−1 for PANI/GNS/Pt, PANI/GNS/CNT, PANI/CNT/Pt and pure PANI, respectively. Observed outstanding performance for the quaternary nanocomposites, is not only due to the presence of GNS and CNT which can offer good electrical conductivity, but also associate with a high surface area and conductivity dedicated from Pt nanoparticles and a high redox activity of PANI. Furthermore, the PANI/GNS/CNT/Pt nanocomposite present excellent long cycle life with 84.8% specific capacity retained after 1000 charge-discharge processes. The observed high performance of PANI/GNS/CNT/Pt electrode makes it attractive for the development of high-efficiency electrochemical energy storage devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.