Abstract

Accelerated weathering studies are necessary to determine future risks arising from the loss of durability of materials under environmental conditions (e.g. ultraviolet irradiation from the sun, moisture from rainfall, temperature cycling). The influence of different accelerated weathering conditions such as UV light and moisture on the properties of two epoxy resin systems incorporating microcrystalline cellulose (MCC) was evaluated. This study aimed to assess changes in chemical properties (FTIR), mechanical properties (tensile tests), thermal properties (TGA and DSC) and morphology (SEM) before and after accelerated weathering. The samples exposed to different accelerated weathering times (1, 2, 3, 4, and 6 months) were based on the diglycidyl ether of bisphenol A, DGEBA, or hydrogenated diglycidyl ether of bisphenol A, HDGEBA, with amine crosslinker (2,2,4-trimethyl-1,6-hexanediamine, TMDA) and 2% MCC. Incorporation of MCC improved thermal stability, reduced surface oxidation, and gave better retention of mechanical properties after accelerated weathering. Both epoxy resins and epoxy composites exhibited a reduction in the tensile strength upon accelerated weathering with the composites showing less reduction in the tensile strength after 6 months. The glass transition temperatures (Tg) before and after accelerated weathering were also measured. DGEBA-TMDA/2%MCC and HDGEBA-TMDA/2% MCC composites reduced the decrease in the Tg after accelerated weathering, compared to that of DGEBA-TMDA and HDGEBA-TMDA samples. Degradation primarily decreased the mechanical properties of the composites, with some damaged specimens showing on the surfaces of DGEBA-TMDA/2% epoxy composites and HGEBA-TMDA/2%MCC composites. Fewer morphological changes with limited voids were seen on the DGEBA epoxy interface for HDGEBA compared to DGEBA composite samples. Incorporation of 2%MCC in DGEBA-TMDA and HDGEBA-TMDA increased resistance to thermal degradation after accelerated weathering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.