Abstract

The mitochondrial H+/site ratio (i.e. the number of protons ejected per pair of electrons traversing each of the energy-conserving sites of the respiratory chain) has been evaluated employing a new experimental approach. In this method the rates of oxygen uptake and H+ ejection were measured simultaneously during the initial period of respiration evoked by addition of succinate to aerobic, rotenone-inhibited, de-energized mitochondria. Either K+, in the presence of valinomycin, or Ca2+, was used as mobile cation to dissipate the membrane potential and allow quantitative H+ ejection into the medium. The H+/site ratio observed with this method in the absence of precautions to inhibit the uptake of phosphate was close to 2.0, in agreement with values obtained using the oxygen pulse technique (Mitchell, P. and Moyle, J. (1967) Biochem. J. 105, 1147-1162). However, when phosphate movements were eliminated either by inhibition of the phosphate-hydroxide antiporter with N-ethylamaleimide or by depleting the mitochondria of their endogenous phosphate content, H+/site ratios close to 4.0 were consistently observed. This ratio was independent of the concentration of succinate, of mitochondrial protein, of pH between 6 and 8, and of ionic composition of the medium, provided that sufficient K+ (plus valinomycin) or Ca2+ were present. Specific inhibitors of the hydrolysis of endogenous ATP or transport of other ions (adenine nucleotides, tricarboxylates, HCO3-, etc.) were shown not to affect the observed H+/site ratio. Furthermore, the replacement of succinate by alpha-glycerol phosphate, a substrate which is oxidized on the outer surface of the inner membrane and thus does not need to enter the matrix, gave the same H+/site ratios as did succinate. It is concluded that the H+/site ratio of mitochondrial electron transport, when phosphate movements are eliminated, may be close to 4.0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.