Abstract

In this work, the effect of cereal extracts, used as delivery vehicles for potentially probiotic lactic acid bacteria (LAB), on the acid tolerance of the cells was evaluated under conditions that simulate the gastric tract. More specifically, the effect of malt, barley and wheat extracts on the viability of Lactobacillus plantarum, Lactobacillus acidophilus and Lactobacillus reuteri during exposure for 4 h in a phosphate buffer acidified at pH 2.5 was investigated. In the absence of cereal extracts all strains demonstrated a significant reduction in their cell population, particularly L. plantarum. The viability of L. plantarum was improved by approximately 4 log 10 cycles in the presence of malt and 3 log 10 cycles in the presence of wheat and barley. The survival of L. acidophilus and L. reuteri was increased by more than 1.5 and 0.7 log 10 cycle, respectively, upon addition of cereal extracts. In order to evaluate the contribution of the cereal constituents on cell survival, the individual effect of glucose, maltose and free amino nitrogen (FAN), which were added at concentrations that correlated to the reducing sugar and FAN content of the cereal extracts, was examined. The viability of L. plantarum was progressively improved as the maltose or glucose concentration increased; an increase by approximately 2 log 10 cycles was observed in the presence of 8.33 g/l sugar. The survival of L. acidophilus increased by more than 1 log 10 cycle, even at very low concentrations of maltose and glucose (e.g., 0.67 g/l), while L. reuteri stability was enhanced in the presence of maltose but no appreciable effect was demonstrated in the presence of glucose. Sugar analysis indicated that glycolysis was inhibited in all cases. Addition of tryptone and yeast extract, used as sources of FAN, enhanced L. acidophilus acid tolerance, but did not affect L. reuteri and L. plantarum. The results presented in this study indicate that malt, wheat and barley extracts exhibit a significant protective effect on the viability of L. plantarum, L. acidophilus and L. reuteri under acidic conditions, which could be mainly attributed to the amount of sugar present in the cereal extracts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.