Abstract
Increasing beam power of solid-state lasers enables high welding speeds for laser welding processes. However, increasing welding speeds lead to imperfections, especially spatter formation while processing high-alloy steels. A recent and novel approach to reduce the spatter formation is the utilization of a local gas flow to manipulate the keyhole pressure balance beneficially. To get a better understanding of the effect of the gas flow on the keyhole and its geometry during deep penetration welding, a half-section setup was developed. The laser beam was positioned partially on a glass plate and the metal sheet to provide an insight into the processing zone by means of high-speed recordings. Thus, it was possible to measure the keyhole geometry and to quantify the effect of different welding speeds and gas flows on keyhole length for full penetration welds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.