Abstract
Excessive cholesterol levels can lead to hypercholesterolemia, which is related to cardiovascular diseases (CVDs), and CVDs are a serious threat to human health. Therefore, lowering cholesterol levels is necessary, and diet intervention is safer than drugs are. The cholesterol-lowering effect of Levilactobacillus brevis M-10 isolated from spontaneously fermented millet sour porridge was investigated in fifty C57BL/6N male mice. After a 4-week intervention, the food intake, weight gains and organ indices were calculated; the lipid contents in the serum, liver, and feces were determined; the histopathology of the liver tissues was observed; the expression of metabolism-related genes was determined; and short-chain fatty acid (SCFA) levels in the droppings were monitored. The results showed that administration of a high dose of L. brevis M-10 (1 × 1010CFU/mL) significantly reduced food intake, suppressed weight gain; prevented excessive liver growth; and reduced the total serum cholesterol, triglycerides, low-density lipoproteins; and total hepatic cholesterol and triglyceride contents (P < 0.05) in high-cholesterol mice. Moreover, a high dose of L. brevis M-10 significantly promoted the fecal excretion of cholesterol and triglycerides (P < 0.05) and alleviated liver damage induced by a high-cholesterol diet. Furthermore, a high dose of L. brevis M-10 significantly downregulated the cholesterol metabolism-related gene expression of NPC1L1, ACAT2, HMG-CoA, and SREBP2 but upregulated the gene expression of ABCG5, CYP7A1, and LXR-α (P < 0.05). Additionally, a high dose of L. brevis M-10 significantly increased SCFA contents, including those of acetic acid, propionic acid and n-butyric acid (P < 0.05). These findings could provide support for the use of L. brevis M-10 in the application of functional foods to alleviate hypercholesterolemia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.