Abstract

Microfibers are a new type of pollutants that are widely distributed in water bodies. And the simultaneous removal of pollutants in water is popular research in the field of water treatment. In this study, magnesium hydroxide was used as coagulant to investigate the performance and mechanism of coagulation and removal of dyes (reactive orange) and microfibers (MFs). The presence of dyestuff in the composite system promoted the removal of microfibers, and the maximum removal efficiency of both could reach 95.55% and 95.35%. The coagulation mechanism was explored by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and zeta potential. The removal of reactive orange and microfibers relied on electrical neutralization, sweep flocculation, and adsorption mechanisms. Turbidity can enhance the removal efficiency of both. Boosting the rotational speed can increase the removal efficiency of microfibers. This study provides an important theoretical support for an in-depth understanding of the characteristics and mechanisms of coagulation for the removal of complex pollutants from printing and dyeing wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.